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The driven transport of fluid vesicles through narrow, cylindrical pores in a linear external
potential is studied using Monte Carlo simulations, scaling arguments, and mean-field theory. The
mobility of the vesicles increases sharply when the strength f of the driving field exceeds a threshold
value f*. For f > f*, the mobility saturates at a value that is essentially independent of the strength
of the driving field. The threshold field strength f* is found to scale with the membrane bending

rigidity &, the vesicle area Ao, and the pore size 7, as f*/ksT ~ (k/ksT) P A,

3/24n —
/+"7‘p2". An

analysis of the zero-temperature limit yields the exponents 8 = 0 and n = 1.55, while the Monte
Carlo simulations of low-bending-rigidity vesicles are well described by the (effective) exponents

B ~0.2and n ~ 2.4.

PACS number(s): 05.40.+j, 64.60.Fr, 87.22.Bt

I. INTRODUCTION

Lipid bilayer vesicles have been studied intensively re-
cently [1,2]. It is now generally accepted that the shape
and fluctuation spectra of vesicles are controlled by the
bending energy [3-5]

ch‘rv = /dS I:%/{(Cl + 02)2 -+ Rlclcz] (1)

of the membrane, where C; and C; are the two principal
curvatures, and the integral extends over the vesicle sur-
face. The interplay between the bending elasticity and
constraints on the volume or the mean curvature gives
rise to a large variety of equilibrium shapes [6-10]. On
the other hand, the fact that membranes are tensionless
makes them very “soft,” so that vesicles can be deformed
easily by external forces. For example, red blood cells
can squeeze through narrow capillaries of diameter less
than their size [11], and artificial, ultraflexible vesicles
(transfersomes) have been shown to be able to transport
drugs such as insulin through the intact skin [12-14].

In this paper we study the driven diffusion of vesicles
through narrow, cylindrical pores. The energy FE.y, re-
quired to deform a spherical vesicle of radius r, to fit
into a tube of radius 7, is Ecyi ~ £(ro/7p)? for 7y > 1.
For pure lipid bilayers, the bending rigidity « is typically
on the order of 10kgT — 20kgT, so that the probabil-
ity that thermal fluctuations can overcome this barrier is
extremely small. A driving field is therefore required to
pull (or push) the vesicle through the pore. This can be
a hydrostatic or osmotic pressure gradient, or an electric
field. In many applications, such as transdermal drug
delivery [12-14], this driving field is rather small. On the
other hand, large field gradients could easily rupture the
vesicle membrane [15,16]. Optimal efficiency therefore
requires that the bending rigidity « of the vesicle be on
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the order of kpT'.

Ultraflexible vesicles with an effective bending rigid-
ity on the order of the thermal energy can be obtained
when the lipid bilayer consists of a mixture of two
or more components with different “spontaneous curva-
tures.” Such composite membranes can still be described
by the Hamiltonian (1), but with an effective bending
rigidity which depends on the concentrations and spon-
taneous curvatures of the lipid components [17-19]. This
reduction of the bending rigidity can easily be under-
stood intuitively: the lipid species which better adapts
to large curvatures accumulates in strongly deformed re-
gions, thereby reducing the energy cost of vesicle defor-
mation.

In this paper we study the driven diffusion of vesicles in
a constant field gradient through a cylindrical tube with
a periodic array of narrow (cylindrical) segments. This
corresponds, for example, to the transport of uniformly
charged vesicles driven by a constant electric field [20].
We assume that the field strength is sufficiently small
that the transport is slow compared to the time scale of
thermal fluctuations of the membrane, so that hydrody-
namic effects can be neglected. Furthermore, the volume
of the vesicle is free to adjust to the external conditions.
The situation usually studied in experiments, however,
is a vesicle suspension which is driven by a hydrostatic
pressure difference through a thin, porous material [14].
In this case, the flow field at the entrance of the pores
may already elongate the vesicles [21] so that they can
slip into the pores more easily. On the other hand, if
the rate of solvent exchange across the membrane is slow
enough, the vesicle mobility could be reduced. A more
detailed comparison with experiment will be published
elsewhere [22].

How does the permeability of a vesicle suspension de-
pend on the strength of the driving field, the vesicle’s
bending rigidity , its size r,, and the pore radius r,? In
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this paper we address this question using Monte Carlo
simulations, scaling argument, and mean-field theory.
Our analysis is based on the curvature Hamiltonian (1)
for a vesicle with surface area A. The driving field is
modeled by an additional potential energy contribution

Hyor = f / ds z (2)

to the vesicle free energy. In Sec. II we present Monte
Carlo results for the transport of a single vesicle down a
tube composed of a sequence of wide and narrow regions.
It is shown that transport occurs via a sequence of nucle-
ation processes, and the scaling behavior of the threshold
field strength f* at which the nucleation barrier vanishes
is described. Section III contains an analysis of the zero-
temperature limit. The scaling form of f* is derived, and
the scaling exponents are determined numerically. Fluc-
tuation effects are discussed briefly in Sec. IV. The paper
closes in Sec. V with a short summary and discussion.

II. MONTE CARLO SIMULATIONS

We have performed extensive Monte Carlo simulations
of the transport of simple model vesicles in a cylindri-
cal geometry in order to study the dependence of the
mobility on the pore radius, the vesicle size, and the
bending rigidity. The lipid membrane is modeled by
a triangular network of N spherical beads of diameter
09, which are connected by flexible tethers of length
¢ < V/30¢. This constraint on the tether lengths guar-
antees self-avoidance. In our simulations, we use g = 1
and £ = v/2.80¢. In order to allow for diffusion within
the membrane, tethers can be cut and reattached be-
tween the four beads which form two neighboring trian-
gles. The bending energy is approximated by the scalar
product of normal vectors n; and n; of neighboring tri-
angles 7 and j,

chr‘u = )‘Z(l —n;- n.’i) ’ (3)
(ij)

where A = /3x [23]. We comnsider a single vesicle confined
to a tube of radius R (more precisely, the center of mass
of each bead is confined to the interior of the tube). The
tube has narrow regions, in which the radius is reduced
to rp. The length of the narrow regions, as well as the
distance between them, is L. Finally, the driving field is
modeled by the linear potential fz;, where z; is the z
coordinate of bead k, so that

H:chrv+fggzzk . (4)
k

Here, the 2z direction is parallel to the long axis of the
tube. The simulations are performed using the standard
Metropolis algorithm. A Monte Carlo step (MCS) con-
sists of an attempt to update the positions of all N beads
by a random increment in the cube [—s, 5], followed by
N attempted tether cuts. More details concerning the
simulation procedure can be found in Ref. [23]. We do
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not pose any constraints on the volume of the vesicle. By
construction, our model vesicles can never be torn apart.

The motion of a vesicle along the tube can be described
by monitoring the position of its center of mass as a func-
tion of Monte Carlo time (measured in units of attempted
moves per bead). A typical transport curve is shown in
Fig. 1. In the wide portions of the tube, the vesicle moves
with a velocity proportional to the strength of the driv-
ing field. It slows down when it reaches the entrance of
the pore. After an f-dependent waiting time, it slips into
the narrow portion of the tube (compare Fig. 2). As soon
as it is inside the pore, it moves with approximately the
same velocity as outside the pore; after a while, the vesi-
cle leaves the pore region, and the whole process starts
all over again. We calculate the average velocity of a
vesicle typically from runs of (10-50)x10% Monte Carlo
steps per bead, which corresponds to the passage of up to
40 pores in sequence. Since the vesicle is forced to take
the shape of a long cylinder inside the pore, its volume V
is reduced compared to the average volume outside the
pore. This can be seen, for example, from the bimodal
shape of the volume distribution P(V'), which is shown
in Fig. 3 for the smallest pore radius we have studied
in our simulations. Note that for the bending rigidities
and pore sizes used here, the motion of the vesicle is slow
compared to other characteristic time scales, such as the
typical relaxation time for shape fluctuations. It should
therefore be justified to neglect hydrodynamic effects, as
we did in our simulations.

The quantity we determine from the simulations is the
mobility p of the vesicle, which is given by the velocity
of the center of mass divided by the total driving force
Nolf. Since the mobility of a free vesicle scales as 1/N,
we show in Fig. 4 the reduced mobility Ny [measured
in units of 63/(kpgT) per 10° MCS] as a function of the
driving field for N = 127, A/kpT = 1.0, and several dif-
ferent pore sizes. The lower limit of field strengths f we
can study is reached when the waiting time at the pore
entrance is of the same order as the total time of a sim-
ulation run. With increasing f, the mobility rapidly in-
creases, until, for large driving fields, it reaches a plateau

0 10 20
t (units of 105 MCS)
FIG. 1. The position of the center of mass, zc.m., of a vesicle
of size N = 407 and bending rigidity A = 2.0kgT, moving in
a tube with pore radii R = 900, rp, = 300, and segment length

L = 3009, as a function of Monte Carlo time t. The driving
field strength is fos = 0.07kpT.
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value which is roughly independent of the pore size. The
threshold driving field f*, at which the crossover from
small to large mobilities occurs, moves to larger values of
f with increasing pore size. This qualitative behavior is
very similar to the one observed experimentally [14,22].

A reasonably good collapse of data for different pore
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FIG. 2. Conformations of a vesicle of size N = 407 and
bending rigidity A = 2.0kgT moving in a tube of radius
R = 90y at three different stages of squeezing through a cylin-
drical pore of radius 7, = 3.000. (a) fos = 0.06kgT, after
10 x 10° MCS, (b) fos = 0.06kgT, after 30 x 10° MCS, (c)
fos = 0.09kpT, after 10 x 10 MCS.
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FIG. 3. Volume distribution function P(V') for a vesicle of
size N = 247 and bending rigidity A = 2.0kgT, with pore size
rp = 2.500, segment length L = 3000, tube radius R = 70y,
and driving field fo3 = 0.09kpT.

radii, bending rigidities, and vesicle sizes can be obtained
by using a rescaled driving field f = f/f*. Dimensional
analysis leads us to expect that f* should have the scaling
form

VA &

f= RA_3/2 E y T )
f rp A kT

(3)

—

where A ~ oZN. The scaling function Z depends on
k/(kBT), and on two ratios of three length scales, the
pore radius rp, the vesicle radius r, ~ v/ A, and the per-
sistence length £, = ag exp[(47/3)x/(kgT)] (where aq is
a microscopic length scale of order o¢) [24,25]. In the
limit of large bending rigidities, where £, > r, the scal-
ing form (5) reduces to

VA &

P=kAT2E [ Y2, ) . 6
f “\ rp kBT (6)
1500 4
1000 1
Np
500
0 T r— - . , .
0.0 0.05 0.10 0.15
fo,>/ kgT

FIG. 4. The reduced mobility Nu [measured in units of
0% /(ksT) per 10° MCS] of a vesicle of rigidity A = 1.0kgT as
a function of the driving field strength fo3/(ksT), for four
different pore radii rp, as indicated. The length of the tube
segments is L = 1500; the radius of the wide parts of the tube
is R = 500.
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A more detailed justification of this scaling ansatz will
be given in Sec. III. Using the results of Secs. III and
IV as a guide, we have analyzed our data using a simple
power-law ansatz

£*/kBT = fo (k/kpT)**A A=3/2+n p22n (7)

Scaling plots for fixed A and various values of r, and N
are shown in Fig. 5. Scaling plots for fixed r, with dif-
ferent values of A and IV are shown in Fig. 6. Note that
we have dropped the A dependence of f* in Fig. 5, and
the r, dependence of f* in Fig. 6, so that the crossover
from small to large mobility does not necessarily occur at
similar values of f/f* in these two figures. It can be seen
from these figures (and Table I) that essentially all our
data can be described consistently using the exponents
B =0.2+0.2 and n = 2.4 £ 0.1. The only exception is
the data set for A = 1.0kgT; however, this value of A
already lies in the regime of branched-polymer-like con-
formations [23,26] so that a different scaling behavior can
be expected in this case, compare Eq. (5). It should be
emphasized that § and n in Eq. (7) are effective expo-
nents, which describe the data over the investigated range
of parameters. These results probably do not represent
true asymptotic scaling behavior.

The reason for this is that there are several sources of
corrections to scaling. These corrections arise because in
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addition to r, and 7, ~ v/A there are several other length
scales in the simulations, such as the bead size og, the
tether length £y, and the tube radius R, which are not
small (or large) compared to r, and 7, [as they should
be if the scaling law (5) is to be correct]. Consider, for
example, the effect of the radius R of the wide parts of
the tube. If R is too small, the vesicle cannot extend lat-
erally as it is pressed against the entrance of a pore. On
the other hand, if R is too large, the vesicle may not feel
the pore immediately, but first have to diffuse laterally
to reach the pore. The mobility curves for two differ-
ent radii R, but otherwise identical systems are shown in
Fig. 7. Fortunately, it turns out that there seems to be
a range of R values, over which the dependence of the
mobility on R is rather weak. Consider now the effect of
changing the length L of the narrow and wide regions of
the tube. Since the drift of the vesicle inside these tube
segments does not provide any interesting information,
we want to keep the segment length as small as possi-
ble in order to save simulation time. On the other hand,
the vesicles can become quite elongated when they have
to squeeze through a narrow pore. Therefore, if L is not
large enough, the front end of the vesicle may already en-
counter the next pore while the vesicle is still elongated.
In this case, it enters the pore more easily, and the mo-
bility increases (“channeling”). In order to avoid this
effect, we have used two values, L = 1509 and L = 300y,
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FIG. 5. Scaling plots of the reduced mobility Ny [measured in units of 03/(kgT) per 10° MCS] for fixed A and several
different N and /00, as indicated. (a) A = 1.0kgT, L = 1500, (b) A = 2.0ksT, L = 1500, (c) A = 3.0kT, L = 1500, (d)
A = 2.0kgT, L = 3000. The tube radius is R = 509 for N = 127, R = 70o for N = 247, and R = 900 for N = 407. Here,
we use the form f*o§/kgT = (rp/00) >N —3/2472 for the threshold field strength. The values of the effective exponents are

listed in Table I.
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for the segment length, compare Figs. 5 and 6; for the
simulations of the largest vesicle size (N = 407) only the
segment length L = 300, has been employed. Neither
a visual inspection of a (small) number of vesicle con-
formations nor a comparison of the scaling behavior for
different values of L give any indication that our results
are affected by channeling.
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FIG. 6. Scaling plots of the reduced mobility Ny [mea-
sured in units of o3/(ksT) per 10° MCS] for fixed r, and
various N and A/kgT, as indicated. (a) r, = 2.500, (b)
rp = 3.000, (¢) rp = 3.500. The segment length is L = 1500
in all cases. The tube radius is R = 50 for N = 127, R = 709
for N = 247, and R = 900 for N = 407. Here, we use the
form f*od/kgT = (A\/ksT)**PN~3/2t"2 for the threshold
field strength. The values of the effective exponents are listed
in Table I.
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TABLE 1. Effective exponents of the threshold field
strength f*03/kgT ~ (M ksT) TP (rp/o0) 2" N—3/2+n2,
For constant A (Fig. 5), we use the threshold field
strength fyo3/ksT = (rp/00) 2™ N™3/2472; for constant rp
(Fig. 6), the threshold field strength fjo8/ksT = (\/
kpT)'*PN—3/2+12_ If the scaling ansatz (6), (7) is correct,
the effective exponents 7; and 72 should be identical. Paren-
theses around some values of 72 indicate that these values
have not been determined from this particular data set (be-
cause it contains only data for a single value of N), but are
taken from Fig. 5(b).

Figure A kT /00 B 7 N2
5(a) 1.0 1.75 | (2.50)
5(b) 2.0 2.25 2.50
5(c) 3.0 235 | (2.50)
5(d) 2.0 2.50 2.30
6(a) 25 0.35 2.35
6(b) 3.0 0.25 2.35
6(c) 35 0.00 (2.50)

III. TRANSPORT FOR LARGE
BENDING RIGIDITIES

In order to understand the scaling behavior of the
threshold field strength, we have to look in more detail at
the balance between the bending energy and the driving
field for a vesicle sitting at the entrance of a pore. The
driving field has two effects; it not only pulls the mem-
brane into the pore, but it also deforms the vesicle into a
flattened droplet configuration. For small driving fields,
the vesicle is only slightly deformed at equilibrium, and
there is just a slight protrusion into the pore. This con-
figuration is locally stable. If, however, due for example
to a spontaneous thermal fluctuation, the vesicle were
to extend into the pore a distance on the order of the
pore radius, the vesicle can lower its free energy by being
sucked into the pore. For small driving fields, transport
occurs via a nucleation process. The nucleation barrier

1000 -
<&
Nup
500 -
)
0 . v . -
0.0 0.05 0.10
fo,>/ kgT

FIG. 7. The reduced mobility Ny [measured in units of
03/(ksT) per 10° MCS] as a function of the driving field
fo3/(ksT) for A\ = 2.0 kgT, 7, = 300, L = 3000, and two
different radii of the wide tube segments, R = 7o, (+) and
R = 1009 (¢). The solid lines are guides to the eye.
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decreases with increasing driving field strength, and even-
tually vanishes for sufficiently large fields. At this point,
the permeability becomes independent of the strength of
the driving field and the vesicle is sucked spontaneously
into the pore.

A. Vesicles at a flat wall

Consider first the shape of a vesicle pressed against
a flat wall located at z = 0 by the potential described
by Eq. (2). For large bending rigidities, the shape of the
vesicle can be determined by minimizing the total energy
F = Fy+F, (with Fy, = Heury and F, = Hpot) for a given
area A [27]. The fixed area constraint is incorporated by
introducing a Lagrange multiplier ¥, as usual.

We restrict ourselves to axisymmetric shapes [9], so
that solutions depend only on the arc length s along a
meridian of the vesicle. The shape of the vesicle is then
described by the tilt angle 1(s) and the coordinates r(s)
and z(s), where 7 and z are the coordinates perpendicular
and parallel to the axis of symmetry, respectively. The
geometric relations between these coordinates are

7 = cos(¢), (8)
z = —sin(¢)). (9)

In this parametrization, the principal curvatures C; and
C, are

Cy =1,

C, = sin(¢)/r,

(10)
(11)

where a dot denotes the derivative with respect to the
arc length s. The total energy becomes

81 .
F = 27m/ L(y,, 7,7, 2,2,7,6) ds + w5r?(s1), (12)
0

with
ng[¢+ﬂ%ﬁﬂ +Sr + frz + 4l — cos(¥)]
+8[% + sin()], (13)

where ¥ = ¥/k and f = f/x. The last two terms in
Eq. (13), which involve the Lagrange multipliers y(s) and
4(s), have been introduced to guarantee that Egs. (8)
and (9) are fulfilled. The upper limit in the integral in
Eq. (12) is the arc length s; at which the vesicle comes
in contact with the wall.

The Euler-Lagrange equations for the vesicle shape are

71.’ =u, (14)

cos(¢) sin(%))

U= —; cos(¥) + 3 + %Sin(ﬂl’) + gcos(¢),

(15)

4203
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y=cul-E W s f (16)
2 T
5= fr, (17)

as well as Egs. (8) and (9). The boundary conditions

r(0) =0, (18)
¥(0) =0, (19)
Blsr) =, (20)
z(s1) =0 (21)

are obvious. The other boundary conditions are a bit
more subtle [9]. Because 8L/8s = 0, the Hamiltonian
H = $dL/8¢ +70L/87 + 0L /d%— L is conserved. Since
the length of the integration interval s; is not fixed, ex-
tremizing F implies [28] H(s,) = 0. Using this, one finds
the additional boundary conditions [27]

4(0) =0, (22)

7(0) =0, (23)

u(s1) =0, (24)

v(s1) + Xr(s1) = 0. (25)

To determine the vesicle shape, we have integrated
these equations using a fourth-order Runge-Kutta inte-
gration scheme with step size € = 5 x 103 for vesicles
of area A = 150 and A = 300. £, as well as the initial
conditions u(0) and z(0) were then adjusted until the
boundary conditions (20), (21), and (25), as well as the
area constraint, are satisfied.

Since f has the dimensions of inverse length cubed,
and A'/? is the only length scale in the problem, we ex-
pect F/k to depend only on the product fA3/2. This is
indeed borne out by our results. Figure 8 contains a plot
of our data for F,, = F/(27k) vs f_Ag/ % obtained using
both Ag = 150 and A, = 300. We have not gone beyond
ng/ % ~ 700 since the dimple at the vesicle center in-
tersects the substrate for larger values of this parameter.

10

0 30 _ 600
fA,

FIG. 8. Reduced vesicle free energy F, = F,/(27K) vs
FAY? for Ao = 150 (+) and Ao = 300 (o). The solid line
is a plot of F, = 3.2 + 0.25(FA3/%)0-61,
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For the plotted parameter range, we find that

F, ~ 3.2+ 0.25(fA3?)¢ (26)

with ¢ ~ 0.61. Some insight into the origins of this scal-
ing behavior can be obtained from the analysis of a simple
flattened droplet model for the adsorbed vesicle given in
the Appendix.

B. The pore region: Small amplitude results

The same procedure can be used to study the portion
of the membrane in the pore region. Consider a large,
flat membrane located at z = 0. At the origin there is a
pore of radius 7,. Under the influence of the driving field,
a portion of the membrane will be sucked into the pore.
The shape of this deformed piece of membrane can be
determined as in the preceding subsection. In particular,
we want to determine the free energy of the membrane
as a function of the field f, the pore radius Tp, and the
excess area AA, where AA is equal to the area of the
membrane in the region r < r, minus the pore area mf,.

The limit of small deviations from planarity can be
analyzed exactly. To lowest order in the out-of-plane
displacement 2(r), the free energy is given by

F/2nk ~ —1—/ " rdr (V22)% + 12_]/ rdr (Vz)?
2 Jo 2 Jo

- Tp
+f / rdr z. (27)
0
The Euler-Lagrange equation is
Viz-2Viz 4+ f=0, (28)

with the boundary conditions 2(rp) = 0 and 2'(r,) = 0,
where the prime denotes the derivative with respect to .
The general (axisymmetric) solution of Eq. (28) is

z(r) = a+br? 4+ ¢ Co(Ar), (29)

where Co(Ar) = Io(Ar) for & > 0, Co(Ar) = Jo(Ar) for
¥ < 0, and A? = |Z|. For £ = 0, the solution becomes
2(r) = a + br? + cr*. Explicitly,

f

z(r) = im(rz — 7';2,)
frp
=938, (o) [0 = Codr)l, - (30)

where the top sign corresponds to 3 > 0 and the lower to
¥ < 0. Similarly, C; is to be identified with the modified
Bessel function I; in the first case, and the Bessel function
J; in the second. The area increment A A is given by

# orali(-80)

(23l

where = Arp. The potential energy F,, behaves as

(31)
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_ 1
F,=F,/2rc = 1

(fr3)?
yro {$

and the bending energy as

_ 32 + ig"gw;} (32)

Fb = Fb/21ﬂ€

g, ,

- i Ge el o

These results show that both F, and F,, scale as
Fop = 6(frp)* Foppl(AA/r3) [ (Fr3)?).

Furthermore, expanding for small x, one finds that

(34)

Fy ~ (fry)®072)(a4/r])* (35)

and

By ~ —(Fr3)20-)(A4/r2)=, (36)
with o = 15/32. x = 0 corresponds to (AA/r2)/(fr3)? =
7/6144 ~ 5.1 x 107%. £ > 0 for smaller values of AA
and £ < 0 corresponds to larger values of AA.

Plots ofF,,/(fr3)2 and —F,/(fr3)? vs (AA/r2)/(fr2)?
are shown in Flgs 9 and 10, respectwely It can be seen
that there is a crossover from behavior characterized by
Egs. (35) and (36) for small values of (AA/r2)/(fr3)?

Fy~ AA/TE (37)
and
Fp~ —frd, /AA/rg, (38)

for larger values of the excess area.
C. The pore region: Arbitrary amplitudes

Results for arbitrary out-of-plane displacements are
easily obtained by solving the Euler-Lagrange equations

107 : - -

107 107 10°
(AA/rpz)/(?rPS)‘

FIG. 9. Fy/(fr) as a function of (AA/r2)/(fri)?. The

scaling behavior is characterized by Eq. (35) for small values,
and Eq. (37) for large values of the excess area.
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10"

10 107 10°
2 ., 3,2
(AA/r2) 1 (Trl)

FIG. 10. —F,/(fr])? as a function of (AA/r2)/(fr3)?. The
scaling behavior is characterized by Eq. (36) for small values,
and Eq. (38) for large values of the excess area.

(8), (9), and (14)—(16) numerically. This was done using
the Runge-Kutta algorithm with step size € = 5 x 1074
with the boundary conditions (18), (19), and (21)—(23),
as well as

$P(s1) =0, (39)
r(s1) = rp, (40)
S7(51)u3(s1) = Sr(s1) = 7(s1): (41)

Solutions are obtained by adjusting %, u(0), and z(0) un-
til these boundary conditions as well as the excess area
constraint are satisfied. In order to test scaling, solu-
tions were obtained for two values of the pore radius,
rp = 2 and r, = 4. It turns out that for the relevant
range of parameters, the small amplitude scaling behav-
ior is characterized by Egs. (37) and (38). Using these
results as a guide, we expect that F, and F},/( f—rg) should
depend only on AA/ r:. We have therefore plotted our
results for F, and F,/(fr3) vs AA/r? in Figs. 11 and
12, respectively. The solid lines are fits to the data. In

0 0.5 1.0 1.5
AA/ rp2

FIG. 11. Scaling plot of data for F} obtained by solving the
Euler-Lagrange equations for two values of the pore radius
rp = 2 (+) and rp, = 4 (¢). The solid line is a fit to the data
[Eq. (42)].
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0 0.5 1.0 1.5
AA/ rp2

FIG. 12. Scaling plot of data for F,,/(fr3) obtained by solv-
ing the Euler-Lagrange equations for two values of the pore
radius 7, = 2 (+) and 4 (¢). The solid line is a fit to the data
[Eq. (43)].

particular, we find that
Fy ~ 2.5475z — 1.752% + 1.26z> — 0.6z* + 0.122° (42)
and

F, =~ —(fr3)v/z(0.1152 + 0.038 16z + 0.008 167 6z2),
(43)

where z = AA/r2.

It is instructive to consider the behavior of
F(AA/T;, frg) = F, + F,. The equilibrium configura-
tion for a given value of f is determined by minimizing
F with respect to AA. Figure 13 contains a plot of F
as a function of AA/'rf, for three values of frg obtained

using (42) and (43). For fr3 = 11, there is a minimum at
small AA/r: and a peak at larger values of the reduced
area. For frg = 12.8, the two extremal solutions have co-

~r am T

0.0 05 1.0
AA/ rp2

FIG. 13. The total free energy F as a function of AA/r2
for three values of fr3, using (42) and (43). For subcritical
field strengths (fr3 = 11, dashed line), there is a metastable
minimum at small values of AA/r2. This minimum vanishes
for the critical field strength (f*r3 = 12.8, solid line). For
larger values f there is no minimum (dotted line); in this
regime, the flat membrane is unstable and is spontaneously
sucked into the pore.
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alesced, and for higher field strengths, the free energy is
a monotonically decreasing function of AA/r2. For small
field strengths, therefore, the membrane protrudes only a
small amount into the pore. However, spontaneous fluc-
tuations of sufficient amplitude can push the membrane
over the free energy barrier, causing the membrane to be
sucked into the tube. The height of this nucleation bar-
rier decreases with increasing field strength, ultimately
vanishing at a critical field strength f*. For larger values
of the field, the flat membrane is unstable and is sponta-
neously sucked into the pore. The critical field strength

scales as f* ~ m'p‘3 in this case.

D. The vesicle-pore system

The behavior of the whole adsorbed vesicle-pore sys-
tem can be determined in an analogous fashion. For sim-
plicity, we assume that the reduced vesicle free energy F,
is given by (26). The total free energy is therefore

F, = 0.25[(f{Ao — AAY/?)¢ — (FAY*)] + Fy + B,
(44)

where F}, and F, are given by (42) and (43), respectively,
and Ay is the total surface area of the vesicle. We have
subtracted off the reference free energy of the vesicle ad-
sorbed on a flat wall so that F‘t(AA =0)=0.

The critical field strength f* at which the nucle-
ation barrier vanishes is determined by the simultane-
ous solution of the two equations 8F;/0AA = 0 and
8%F;/0(AA)? = 0. Tt follows from Egs. (42)—(44) that
f* has the scaling form

F* = kAg*’I(r2/Ao) . (45)

This result confirms the scaling ansatz which we have
used to analyze our Monte Carlo data. Owur numeri-
cal results for the scaled critical field strength f*Ag/ 2

are plotted in Fig. 14 as a function of r2/Ao for the

103

? * A0312

102

0.02 0.04 0.06 0.08

FIG. 14. Scaled critical field strength f"Ag/2 as a function
of 72 /Ao for the two values Ag = 250 (x) and 500 (o). In the

regime studied, f*A3/% ~ (r2/A0)™", with 5 ~ 1.55.
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two values Ag = 250 and 500. It can be seen that
f"‘Ag/2 ~ (r2/Ao)™", with n =~ 1.55. This implies that
the threshold field strength scales as f* ~ xr, Z"Ag_s/ 2,

This calculation shows that for an ensemble of vesi-
cles, where each is squeezed through a single pore, the
value of the threshold field strength should not depend
on the fate of the vesicle after penetration of the pore.
The rate determining process is the nucleation of an ini-
tial, sufficiently large protrusion. Vesicle fragmentation
inside the pore should therefore not affect the mobility
(or permeability) curves.

IV. FLUCTUATION EFFECTS

Thermal fluctuations modify the results of the preced-
ing section in several ways. First, the bending rigidity on
large length scales is reduced by fluctuations. This can
be taken into account by replacing x in the free energy
F, of a vesicle of radius 7, ~ VA by the renormalized
rigidity [25,29,30,26]

3kgT
4

kr(ry) = K — In(ry/ao) , (46)
where ag is a microscopic cutoff of the order of the size of
the molecules. Similarly, x in the pore contribution to the
free energy has to be replaced by kgr(rp). The effect of
the reduced bending rigidity becomes pronounced when
the persistence length approaches the vesicle size [so that
Kkr(7») becomes very small].

Second, membrane fluctuations lead to a steric repul-
sion between different parts of the vesicle, as well as of
the vesicle and the wall. To study this effect in more
detail, consider the flattened droplet model described in
the Appendix. For large field strengths, the distance 2h
between the upper and the lower part of the flattened
droplet becomes rather small. In this case, the steric
interaction [31] gives an additional contribution

(kgT)? wr
(2h)?

Fyy=c

(47)

to the free energy, where ro is the radius of the contact
area of the vesicle and the wall. For simplicity, we ignore
finite size corrections in Eq. (47). Monte Carlo simu-
lations imply ¢; =~ 0.11 [32-34]. For sufficiently small
thickness h, the bending energy of the rim of the flat-
tened droplet is small compared to the steric repulsion.
In this case, the free energy of the vesicle is (approxi-
mately)

1

Ver

Fv(m) = (kBFLT)z

fA3 2z 4 mey z 72, (48)

where z = h/r,.
respect to = gives

The minimization of Eq. (48) with

(49)

2/3
F, = gncl [fA"/sz—T] .

KCy
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Two conclusions can be drawn from this result. (i)
The exponent { of the vesicle free energy can be larger
than the value of {( ~ 0.61 obtained by minimiz-
ing the bending energy. (ii) Another scaling variable,
k/(kgT), appears in the scaling form of the threshold
field strength [compare Eq. (45)]. Note, however, that
since 8%F, /8(AA)? = 0 when ¢ = 2/3, higher-order cor-
rection terms will play an important role in determining
the scaling behavior of the threshold field strength when
the scaling exponent ¢ approaches 2/3.

V. SUMMARY AND DISCUSSION

We have studied the transport properties of vesicles
through narrow pores, using Monte Carlo simulations,
scaling arguments, and a minimization of the bending
energy in an external field. We find that while there is es-
sentially no transport for driving fields which are smaller
than a threshold field strength f*, the vesicles move
through the pores almost unhindered for driving fields
larger than f*. For small f, transport occurs via a nu-
cleation process. With increasing f, the height of the nu-
cleation barrier decreases and eventually vanishes at the
critical field strength f*. The threshold field increases
with decreasing pore radius r, as well as increasing bend-
ing rigidity x and membrane area. This general behavior
is in agreement with experiment [13]. The roughly linear
dependence of f* on k explains why ultraflexible vesicles
are much more efficient than large-bending-rigidity lipo-
somes for the transport of drugs through the intact skin:
only for small bending rigidities can the regime f > f*
be reached for realistic driving fields.

The present work should be extended in several direc-
tions. First, simulations should be performed at larger
bending rigidities in order to check explicitly if the scal-
ing behavior obtained in Sec. III is recovered. Second,
the dependence of the mobility on the outer tube ra-
dius R has to be studied in more detail. In particular,
it would be interesting to study the crossover from the
diffusion- to the nucleation-dominated regime. Third, in
order to understand the crossover from large to small
K, the transport properties of very-low-bending-rigidity
vesicles (with k <« kgT), which are characterized by
branched-polymer-like conformations, have to be deter-
mined. Finally, the effect of the two-component nature
of the lipid bilayer vesicles used in experiments has to be
studied more carefully.
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FIG. 15. Flattened droplet configuration of an adsorbed
vesicle.
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APPENDIX: FLATTENED DROPLET MODEL

If the adsorbed vesicle is assumed to have the shape
of a flattened droplet of thickness 2h and radius 7o + h
(see Fig. 15), the vesicle free energy can be calculated
explicitly. In this case, the total surface area of the vesicle
is A =2nr2(1 + mz + 2z?),

Fy = 27k [4 + M—l————aﬁ arccos(m)] ) (A1)
and
Fp =2 frya(l + nz + 22?) (A2)
1
= —fA%2 2(1 + 7z + 222 —1/2, A3
Va4 : o

where = h/r¢. The total energy F = F,+F,, is obtained
by minimizing with respect to h. It follows that

F =27k Q(fA%/?). (A4)

The scaling behavior at large field strengths is easily de-
termined by performing this calculation to lowest order
in z. Explicitly, one finds that

Q) = 3+ (2m) "4y

to leading order.

(A5)
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